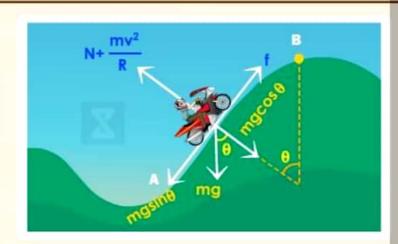

MOTORCYCLIST ON A CURVED PATH

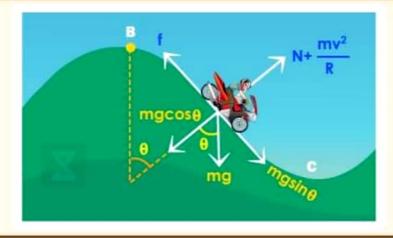
A cyclist having mass m moving with constant speed on a curved path

We divide the motion of the cyclist in four parts :

1 From A to B

2 From B to C 3 From C to D 4 From D to E


MOTION OF CYCLIST FROM A TO B


(1 and 3 are same type of motion)

$$N + \frac{mv^2}{R} = mg \cos \theta$$
 ; $f = mg \sin \theta$

AS CYCLIST MOVE UPWARD

In 1 and 3 normal force increases but frictional force decreases because 8 decreases.

MOTION OF CYCLIST FROM B TO C

$$N + \frac{mv^2}{R} = mg\cos\theta \implies N = mg\cos\theta - \frac{mv^2}{R}$$


$$f = mg\sin\theta$$

From B to C. Normal force decreases but friction force increases because a increases.

MOTION OF CYCLIST FROM D TO E

$$N = \frac{mv^2}{R} + mg\cos\theta$$
 : $f = mg\sin\theta$

From D to E, θ decreases therefore mg $\cos\theta$ increases whereas Normal force increases but frictional force decreases.

